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Compartmental Modelling

The system under test is modelled as a set of interconnected compartments.

The amounts in these compartments interact with each other and they change 
following the rules described by a set of differential equations.

These compartments are only 
mathematical concepts. 
They don’t necessarily correspond 
one-to-one to physical parts of the 
body and the amount which is 
contained in them may represent 
drug concentration, a biomarker 
value, an effect.
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A model as a set of differential 
equations

For a compartmental model to be completely specified, we need to define its 
structure, i.e. the number of compartments and the mechanism that describes 
how the amount in each compartment changes over time.

Mathematically, this is achieved with a set of differential equations, one equation 
for each compartment in the model.
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𝑑𝐴1
𝑑𝑡

= −𝑘𝑒𝑙 ⋅ 𝐴1 − 𝑘12 ⋅ 𝐴1 + 𝑘21 ⋅ 𝐴2 𝐴1(𝑡 = 0) = 𝑑𝑜𝑠𝑒

𝑑𝐴2

𝑑𝑡
= 𝑘12 ⋅ 𝐴1 − 𝑘21 ⋅ 𝐴2 𝐴2(𝑡 = 0) = 0



Differential equation: Definition

A differential equation is an equation that contains derivatives, i.e. it 
describes the rate of change of a quantity over time.

If we call A the amount in a compartment - or A(t) to stress that it changes 
over time - we can consider this simple differential equation

𝑑𝐴(𝑡)

𝑑𝑡
= 𝑓 𝐴 𝑡 , 𝑡, 𝑝

dA/dt denotes the rate of change of A and on the right hand-side there is the 
function f(.) that describes this rate of change

This function can depend on the instantaneous value of A(t), on the time t, or 
on other parameters p.



A simple differential equation

Let us have a look at a specific case of differential equation

𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘 ⋅ 𝐴(𝑡)

In this case, at each time t, A(t) is going to decrease with speed proportional 
to the amount at that specific time, with k being the proportionality constant.

A

k

When drawing a scheme of a model, the 
notation for this kind of equation is simply an 
arrow exiting a compartment. 



Initial conditions

Now we know how the quantity A is changing over time, but we need an 
initial value to start with. 

This is known as initial condition, and it is normally defined with the notation 
shown below

𝐴 𝑡 = 0 = 𝐴0



Solution of a differential equation

This differential equation with this initial condition 

𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘 ⋅ 𝐴 𝑡 𝐴 0 = 𝐴0

Has the following solution (you can try to derive it and see that it works):

𝐴 𝑡 = 𝐴0 ⋅ 𝑒
−𝑘⋅𝑡

which is an exponentially decreasing function. 

We can use it to model drug elimination, when it follows linear kinetics, and the 
initialisation can be used to insert the dose into the system.



Another simple differential equation

Let us try now another simple differential equation

𝑑𝐴(𝑡)

𝑑𝑡
= 𝑅𝑖𝑛 𝐴 0 = 0

In this case A(t) is 0 at time 0, and then it grows constantly at the same rate.

Solution:

𝐴 𝑡 = 𝑅in ⋅ 𝑡

We can use this for drug infusion



Order of differential equations
In most simple PK compartmental models, the rates of change between 
compartments are similar to the simple equations we have just seen. 

They are example of either zero-order (e.g. constant infusion) or first-order 
(e.g. exponential elimination) kinetics. 

The order is determined by the exponent (n) when the differential equation is 
written in the following form:

𝑑𝐴

𝑑𝑡
= −𝑘 ⋅ 𝐴𝒏

A more complex description is sometimes necessary when saturation is 
present (Michaelis-Menten).



Saturable kinetics

A hybrid situation in which the system behaves approximately as
• first-order for lower concentrations,
• zero-order for higher concentrations (saturation)

Image from http://en.wikipedia.comDrug concentration (mg/L)
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Saturable kinetics
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Maximum 
rate

Michaelis constant
Concentration at which 

Vmax/2 is reached

This is normally described by the Michaelis-Menten equation.

If C is the concentration, its rate of change is described by



Summary

Summary of most commonly used kinetics, along with their parameters and 
units

Kinetics Constants Units (example)

Zero-order Rin mg/min

First-order k 1/min

Michaelis-Menten Vmax, km mg/L/min, mg/L



Zero-order vs. First-order

0-order 
(constant)

1st-order


